

This calculations policy has been developed in line with the National Curriculum (NC) for mathematics and the Calculation Guidance for Primary Schools developed by the National Centre of Excellence in Teaching Mathematics (NCETM).

The following statements from the NC have been central to the development of this policy:

- The principal focus of mathematics teaching in key stage 1 is to ensure that pupils develop confidence and mental fluency with whole numbers, counting and place value
- By the end of year 2, pupils should know the number bonds to 20 and be precise in using and understanding place value. An emphasis on practice at this early stage will aid fluency.

Similarly, we follow the NCETM advice that children should be "helped at an early stage to start calculating, rather than relying on 'counting on' as a way of calculating." For this reason, we have focused on developing children's ability to subitize in order to build up fluency with number bonds to 10 and then 20 . These facts must be MEMORISED and thus, it is essential that these skills are practised daily.

In calculating, mathematical understanding is developed through use of representations that are first of all concrete (e.g. Dienes, apparatus), then pictorial (e.g. array, place value counters) to then facilitate abstract working (e.g. columnar addition, long multiplication).

According to the NCETM, "Informal methods of recording calculations are an important stage to help children develop fluency with formal methods of recording. A noticeable difference, however, that the LPS teachers observed in Shanghai is that these were only used for a short period, to help children understand the internal logic of formal methods of recording calculations. They are stepping stones to formal written methods. Here is an example from a Shanghai textbook:

Thus, informal or 'expanded methods' are to be used only to illustrate/explain the formal method and should not be taught as an end in itself.
$23 \times 4=$ ?

| $2: 3:$ | $2 ; 31$ |  |
| :---: | :---: | :---: |
| - 1121 |  | ${ }_{9}$ |
| 8 10--4×3 |  |  |
| $\frac{8!}{9!2!}$ |  |  |


| Objective | Concrete | Pictorial | Abstract |
| :---: | :---: | :---: | :---: |
| To add numbers to 10 | Children should be consistently shown visually that if $3+4=7$ then $7-4=3$ and $7-3=4$ |  | $\begin{aligned} & 5=3+2 \\ & 3+2=5 \\ & 2+3=5 \\ & 5=2+3 \end{aligned}$ |
| Interpret mathematical statements | Key focus is on understanding the meaning of $=$ | 5  <br> 3 2 | $\begin{aligned} & 5=3+2 \\ & 3+2=5 \\ & 2+3=5 \\ & 5=2+3 \end{aligned}$ |


| To subtract numbers to $10$ | es. |  | $\begin{aligned} & 5-2=3 \\ & 3=5-2 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| To add numbers across a tens boundary |  |  | $\begin{aligned} & 7+5=12 \\ & 12=7+5 \end{aligned}$ |



\begin{tabular}{|c|c|c|c|}
\hline To subtract 2 digit numbers (with no exchange) \&  \&  \& $$
\begin{array}{|rl|}
\hline 1 & 0 \\
4 & 8 \\
-3 & 3 \\
\hline 1 & 5 \\
\hline
\end{array}
$$ \\
\hline To subtract 2 digit numbers (with exchange) \&  \&  \& $$
\begin{array}{cc}
\hline 1 & 0 \\
34 & 12 \\
-1 & 6 \\
\hline 2 & 6
\end{array}
$$ \\
\hline Double single digit numbers \& Use practical activities using manipultives including cubes and Numicon to demonstrate doubling \& Double 4 is 8

$\square$
$\square$
$\square$
$\square$ \& $4 \times 2=8$ \\
\hline
\end{tabular}




| Multiplication is commutative | Create arrays using counters and cubes and <br> Numicon. <br> Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer. | Use representations of arrays to show different calculations and explore commutativity. <br> $\bigcirc \longrightarrow \longrightarrow$ | $\begin{aligned} & 12=3 \times 4 \\ & 12=4 \times 3 \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| Counting in multiples | $5+5+5+5+5+5+5+5=40$ | 3 <br> 3 <br> 3 <br> 3 |  |


| To multiply a two digit number by a one digit number (No exchange) | $32 \times 3$ <br> Show as <br> 3 lots of <br> 32$\|$Secure the <br> habit of <br> multiplying <br> the ones <br> column FIRST |  | $\begin{array}{r} 32 \\ \times \quad 3 \\ \hline 96 \end{array}$ |
| :---: | :---: | :---: | :---: |
| To multiply a two digit number by a one digit number (With exchange) |  |  | $\begin{array}{r} 10 \\ 24 \\ \times \quad 3 \\ \hline 2 \end{array}$ $\begin{array}{r} 10 \\ 24 \\ \times \quad 3 \\ \hline 72 \end{array}$ |
| Multiply a 3 or 4 digit number by a 2 digit number |  | Preparatory step (see notes above) $\begin{gathered} 1652 \quad 1652 \\ \times 20 \quad \times 4 \\ \hline 33040 \quad 6608 \\ +\frac{33040}{396089} \end{gathered}$ | $\begin{array}{r} 1662 \\ \times 22 \\ \hline 6608 \\ \frac{6304}{39648} \end{array}$ |

Division as sharing




